Prokaryotes Are Capable of Learning to Recognize Phages

Immune defense genes in bacteria and archaea can identify viral proteins, a study finds, revealing similarities between the immune systems of prokaryotic and eukaryotic organisms.

Written byPatience Asanga
| 3 min read
Illustration of a red bacteriophage infecting a blue bacterium, with other bacteria in the background.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The CRISPR technology commonly used for genome editing was originally based on bacterial defense mechanisms that arose to protect against bacteriophages, though their mode of activation has largely eluded scientists. In the course of understanding this phenomenon, researchers from the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research have identified two proteins in bacteriophages, the viruses that infect bacteria, that activate bacterial and archaeal immune defense systems. The team published their report on August 12 in Science.

This research was a follow-up to a 2020 study, also in Science, where researchers identified several thousand bacterial immune defense genes that protect against bacteriophages. Both papers were led by Alex Gao, a Stanford biochemist who coauthored the newer study while a junior fellow at the Harvard Society of Fellows. He tells The Scientist that he and his colleagues were intrigued by the similarity of the prokaryotic gene ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white headshot of a woman
    Patience is a Nigeria-based freelance science journalist who writes about the environment, biotechnology, and life sciences. She is also the editor of aebsan, a student-run news outlet operated out of the University of Benin, Nigeria. Her writing has featured in aebsan, ICJS, and theGIST.
    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo