Yeast Models Provide New Insights into Neurodegenerative Diseases

The single-celled fungus allows researchers to study Alzheimer’s, Parkinson’s, ALS and other brain diseases with unparalleled speed and scale.

Written byMahlon Collins
| 36 min read
Scanning electron micrograph (SEM) of the unicellular yeast Saccharomyces cerevisiae, known as Baker's or Brewer's yeast.

Register for free to listen to this article
Listen with Speechify
0:00
36:00
Share

ABOVE: MODIFIED FROM © SCIENCE PHOTO LIBRARY, KAGE MIKROFOTOGRAFIE GBR

A new era in research on Friedreich’s ataxia, a rare, fatal neurodegenerative disease, began in 1996 when, 133 years after the disease was first characterized, researchers showed it is caused by mutations in the gene now known as FXN. While this finding was an important advance, it also presented researchers with the daunting task of determining why neurons with FXN mutations were dying in Friedreich’s ataxia patients. To meet this challenge, a team at the University of Utah turned to an unlikely source: the baker’s yeast Saccharomyces cerevisiae. A mere 15 months later, using genome editing, growth assays, and biochemical techniques, the Utah team demonstrated that FXN mutations cause fatal mitochondrial damage. This finding identified an important therapeutic target, and clinical trials have recently demonstrated that two drugs targeting mitochondrial function improve symptoms in Friedreich’s ataxia patients.

This serves as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Mahlon Collins

    Mahlon Collins is a postdoctoral researcher at the University of Minnesota using yeast to understand how individual genetic differences influence protein degradation, an essential biological process linked to numerous human disorders, including neurodegenerative diseases.

    View Full Profile

Published In

Image of the October Cover of The Scientist
October 2021

Number Sense

Researchers debate how animals perceive quantities

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo