Molecules Found in Ginger Remodel the Microbiome

Small RNA-containing particles in ginger root are found to promote the growth of beneficial bacteria and alleviate colitis in mouse guts.

Written byKatarina Zimmer
| 3 min read
an illustration of the inside of an intestine

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Above: © istock.com, rost-9D

The paper

Y. Teng et al., “Plant-derived exosomal microRNAs shape the gut microbiota,” Cell Host Microbe, 24:637–52, 2018.

When Huang-Ge Zhang was younger, his parents would often make him ginger tea when he was ill. Now, as a microbiologist at the University of Louisville in Kentucky, Zhang investigates the mechanisms through which ginger and other edible plants might affect health.

In previous studies, he had found that exosome-like nanoparticles (ELNs)—small extracellular vesicles that often contain RNA—derived from plants such as broccoli and ginger can help prevent alcohol-induced liver damage and artificially induced colitis in mouse models. Recently, when he sequenced ginger-derived ELNs (GELNs), he found that they contained many microRNAs. This made him wonder whether the edible plant RNA could be taken up by gut bacteria and drive expression of bacterial genes—something that human fecal microRNAs have been shown to do in mice.

To find out, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies