Fungi Squeezed Through Microchannels Offer Clues to Cell Growth

A study finds that fast-growing species are stymied by narrow gaps, while slower-growing species can pass through and continue extending.

Written byCatherine Offord
| 3 min read
colonies of mold growing on a Petri dish

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, SINHYU

The paper
S. Fukuda et al., “Trade-off between plasticity and velocity in mycelial growth,” mBio, 12:e03196–20, 2021.

Much of a filamentous fungus’s life involves infiltrating organic tissue: weaving its hyphae between cells in decaying animals, for example, or, in the case of some pathogenic species, invading plants through tiny pores in their leaves. The tips of these fungi grow by synthesizing new cell wall on the extending side, but scientists have puzzled over how they control growth through such tight spaces.

Norio Takeshita of the University of Tsukuba in Japan approached the question by growing seven species of fungi in a microfluidic device with tiny channels, the narrowest just 1 micrometer across—smaller than the diameter of typical hyphae. His team used live imaging techniques, some involving labeling intracellular components with green fluorescent protein, to see how each species handled the challenge. The species turned out to respond ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

June 2021

The Bacterial Nanotubes Debate

The recently discovered structures are making waves in microbiology

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH