Spiny Mice Appear to Regenerate Damaged Kidneys

The mice, already known to regenerate skin, seem to avoid the tissue scarring that leads to organ failure in other animals.

Written byDan Robitzski
| 5 min read
a spiny mouse sits on a piece of wood holding a small morsel to its mouth
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A peculiar rodent called the spiny mouse seems to be able to regenerate kidney tissue, according to research published today (November 3) in iScience. After damaging their kidneys to simulate kidney disease, the scientists found that the spiny mice not only regenerated the structure and function of nephrons, the tiny filters that make up the kidney, but they did so without the dangerous scarring that normally occurs in mammals.

Spiny mice, a collection of several species in the genus Acomys, are famous for their stiff coats of hair that resemble a hedgehog’s quills. The critters were already important to scientists studying regeneration, as they have an unusual defense mechanism in which they shed their skin to escape predators. A 2012 study in Nature revealed that spiny mice regenerate all of the tissue they give up, including vasculature and hair follicles, without any scarring, a process that subsequent research found may ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform