Sister Cells Reveal Cancer’s Fate

A new method traces treatment resistant cells and predicts drugs that can make them more susceptible to cancer therapy.

Written byAparna Nathan, PhD
| 4 min read
Two sister cells are seen in the foreground, while individual cells are seen behind them on a blue background.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Cancer is notoriously hard to treat. In part, this is because the cells making up a tumor are heterogeneous, expressing different genes and molecules that determine their response to treatment. Even if a treatment kills most cancer cells, one survivor is enough for the cancer to persist.

As scientists struggled to find these treatment-resistant cells, they turned to an unexpected tool: sister cells. While human sisters may share clothes or toys, sister cells share their gene expression profiles, which could hint at whether the cells are treatment resistant.

In a study published in Nature Communications, researchers at the University of Helsinki presented a new method called ReSisTrace that utilizes sister cells to identify the molecular states driving treatment resistance in cancer cell lines.1 Guided by these resistance signatures, the researchers devised a method to predict drugs that would sensitize the cells to treatment.

“We can have data [on] both drug sensitivity and transcriptomics at the single-cell level,” said Jing Tang, a bioinformatician at the University of Helsinki and coauthor of the study. “This is unique and novel, and not available by using other techniques.”

Tang and Anna Vähärautio, a cancer biologist at the University of Helsinki and coauthor of the study, wanted to develop a method that combined lineage tracing—the process of tracking cell fate and offspring—with the ability to profile gene expression in individual cells. However, measuring gene expression in a cell typically destroys it, so scientists cannot trace its lineage at the same time. Enter sister cells: a way to achieve both goals in parallel.

Continue reading below...

Like this story? Sign up for FREE Cancer updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

Vähärautio's team devised a method to insert unique DNA barcodes into an ovarian cancer cell line using lentiviral transduction. Then, they allowed the cells to undergo a single division to each produce two sister cells, which they found had similar gene expression profiles. The researchers split the pool of cells in half: in one half, they measured gene expression by single cell RNA-sequencing (scRNA-seq) to construct a picture of each cell’s state, and in the other half, they tested whether the cells responded to certain common cancer treatments.

Using the treatment-resistant cells’ barcodes, the researchers matched them with their sister cells in the pre-treatment pool and analyzed their gene expression profiles. This comparison helped them identify genes that might have caused the cell to evade being killed.

At first, the researchers tried to focus on individual genes, but they soon realized this approach might not be enough. “We don't know if [the genes] are really driving the resistance or if they are secondary effects,” Vähärautio said. This inspired the team to search the whole transcriptome for broader gene expression signatures of treatment sensitivity or resistance. Vähärautio and Tang suspected that these signatures could even help predict additional drugs that could sensitize the cells to a subsequent treatment.

Using published gene expression data collected from cell lines treated with a variety of compounds, Tang’s team identified potential drugs that could push treatment-resistant cells’ gene expression toward that of treatment-responsive cells.2 By doing so, the added drug could prime the cells to respond to cancer treatment. Using computational models, the researchers predicted that administering pevonedistat—a drug that inhibits an enzyme involved in protein degradation—before carboplatin chemotherapy would make the cancer cell line that they were studying easier to kill. They tested their predictions and found that pevonedistat pretreatment, and many other predicted compounds, worked synergistically with common cancer therapies to kill the cancer cells.

These findings came as a pleasant surprise to Vähärautio, and they convinced Tang that this could be a new approach for developing more effective cancer treatments to overcome drug resistance.

Amy Brock, a bioengineer at the University of Texas at Austin who was not involved in this study, noted that the authors defined gene expression signatures by comparing all resistant cells to all sensitive cells, but that there might be even more patterns hidden in individual resistant cells. “It would be interesting to further examine whether sister cells become resistant via common or distinct mechanisms,” Brock said.

Brock hopes that, with a slew of similar methods to track cell lineages and single-cell gene expression, researchers will now focus on applying these tools to better understand how cells evade specific treatments.3,4 Vähärautio and Tang are now applying their method to more sample types, including cancer organoids and acute myeloid leukemia cell lines. But Vähärautio thinks this method could even be useful for studying how cells’ states influence their fates in other contexts, such as development or responses to chemicals. With the computational models for drug prediction, ReSisTrace could even identify ways to change these fates.

“I think the method is really widely applicable and can be used to study many different cell state and fate connections,” Vähärautio said.

Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics from Harvard University. She uses her multidisciplinary training to find both the cutting-edge science and the human stories in everything from genetic testing to space expeditions. She was a 2021 AAAS Mass Media Fellow at the Philadelphia Inquirer. Her writing has also appeared in Popular Science, PBS NOVA, and The Open Notebook.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo