2D Genetic Map of Prostate Cells Charts Cancer Growth

An in situ map of copy number variations in prostate tissue reveals that purportedly cancerous genomic changes frequently occur in the healthy tissue surrounding tumors.

Written byHolly Barker, PhD
| 4 min read
Histological slide showing cancerous prostate tissue
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

In a study published August 10 in Nature, scientists have charted the genetic landscape across a human prostate in high resolution and discovered how additional or missing chunks of chromosomes, known as copy number variations, thought to be unique to cancer are often present in seemingly healthy tissue.

“This was surprisingly and completely unexpected,” says study coauthor Alastair Lamb, a urologist at Oxford University’s Nuffield Department of Surgical Sciences. “We thought that these kinds of changes defined prostate cancer. But they are present in [tissue] which is entirely benign.”

Far from a uniform mass of cells, tumors consist of a patchwork of malignant, benign, and healthy tissues. Understanding how normal cells become cancerous requires that scientists plot the genetic changes within this complex ecosystem. In collaboration with gene technology researcher Joakim Lundeberg and colleagues at the KTH Royal Institute of Technology in Sweden, Lamb’s team used a technique called spatial ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Holly Barker

    Holly Barker is a freelance writer based in London. She has a PhD in clinical neuroscience from King’s College London and a degree in biochemistry from the University of Manchester. She has previously written for Discover and Spectrum News.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH