Putting Exosomes to Work

Researchers identify a handy tool for tinkering with the versatile vesicles.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Released from almost all cell types, found in blood and other bodily fluids, and thought to play a role in cell-to-cell communication, the tiny vesicles called exosomes are garnering a great deal of research interest both as potential diagnostic tools and as vehicles for drug delivery. Many researchers are developing methods for capturing, modifying, and tissue-targeting exosomes. One such tool—the protein CP05—may accomplish all three.

Haifang Yin of Tianjin Medical University in China and colleagues discovered CP05 in a search for proteins that bind CD63—a transmembrane protein abundant on the surface of exosomes. They’ve used this interaction to not only isolate exosomes from human serum via CP05-coated magnetic beads, but also to load cargo onto exosomes and send them to various tissues in mice.

To accomplish the latter, the team created peptide chimeras of CP05 with the tissue-targeting peptides M12, RVG, or SP94 to direct exosomes to muscle, brain, or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas