Bacterial Superglue Enables Antiviral Antibody Discovery

Testing out combinations of antiviral proteins from llamas could help researchers create potent virus-neutralizing multimers.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, GRAFISSIMO

Winter the llama grabbed headlines recently for her part in generating a special type of anti-SARS-CoV-2 antibody. But in fact, any camelid has what it takes to create such valuable proteins, known as single-domain antibodies (sdAbs).

These tiny proteins, which only sharks and camelids (llamas, camels, and related species) are known to make, differ from the antibodies found in humans and other animals in that they’re encoded by just one gene instead of two. This makes them far easier for geneticists to work with in the lab, says virologist Paul Wichgers Schreur of Wageningen University in the Netherlands. Indeed, sdAbs (also known as nanobodies, or VHHs) are being developed for a variety of applications and disease treatments, including antiviral therapies. The idea is that infected patients would be given sdAbs to bind and neutralize the virus, slowing its spread in the body.

To achieve effective virus ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

July/August 2020

Life During a Pandemic

Understanding the virus is just the beginning

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies