Infographic: The Cre-lox System Explained

The Cre-lox recombination method orchestrates remarkable genetic manipulations that remain a gold standard for transgenic mice.

Written byLaura Tran, PhD
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Cre-loxP recombination allows scientists to excise, insert, or invert specific DNA segments with unprecedented accuracy.1,2 This works through two key components: a Cre recombinase and loxP sequence recognition sites. The Cre enzyme identifies pairs of loxP sites (arrowheads), which flank (flox) the DNA, and catalyzes reciprocal DNA recombination between the two sites to excise a small piece of DNA.

Infographic showing the breeding schematic to generate Cre-loxP tissue-specific knockout mice.
modified from © shutterstock.com, Gaspar Gomes Costa; © ISTOCK.COM, seamartini; designed by erin lemieux

To generate a tissue specific knockout mouse, researchers breed a mouse bearing a Cre transgene under a tissue- or cell-type specific or inducible promoter (A) with a homozygous floxed mouse (B).

The offspring are heterozygous for the floxed target gene (C) and breed with the homozygous floxed mouse (B).

The resulting experimental mouse is hemizygous for Cre and homozygous for loxP (D). This is the necessary genotype required to conditionally knock out the target gene in the specific tissue.

Read the full story.

Related Topics

Meet the Author

  • Laura Tran, PhD

    Laura Tran is an Assistant Editor at The Scientist. She has a background in microbiology. Laura earned her PhD in integrated biomedical sciences from Rush University, studying how circadian rhythms and alcohol impact the gut. While completing her studies, she wrote for the Chicago Council on Science and Technology and participated in ComSciCon Chicago in 2022. In 2023, Laura became a science communication fellow with OMSI, continuing her passion for accessible science storytelling.

    View Full Profile

Published In

December 2023 issue cover
Winter 2023

Ephemeral Life

Recent advances in modeling the human placenta may inform placental disorders like preeclampsia

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo