Infographic: Taking AAV screening to the next level

DNA barcodes in AAV vectors technology simplified AAV screening.

Written byMariella Bodemeier Loayza Careaga, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In 2014, researchers combined DNA barcoding with next-generation sequencing (NGS) to develop the adeno-associated virus (AAV) barcode-seq technology for streamlining AAV screening. Using this method, scientists can directly compare the performance of different AAV simultaneously in a single animal.

Illustration showing DNA barcoding with next-generation sequencing
Modified from © stock.adobe.com, uday; © istock.com, Alexandr Dubovitskiy, Alena Niadvetskaya; designed by Erin Lemieux

(1) To track the expression of a specific AAV genome in a pool, researchers add a unique pair of small barcodes consisting of a few nucleotides to the AAV sequence. Each viral genome also contains two flanking inverted terminal repeats (ITR) that enclose the following genes: a rep gene, which is required for viral genome replication and packaging; a cap gene, which is required for the expression of capsid proteins; and a polyadenylation signal (pA), which ensures proper processing and stability of the mRNA product.

(2) Scientists then mix the different barcoded AAV to form an AAV pool or library.

(3) Researchers inject the AAV mixture into a living model, such as a mouse. The different AAV will transduce, or infect, the animals’ tissues.

(4) Scientists collect the tissues of interest and extract DNA from the different cells.

(5) Viral DNA from the different AAV is amplified and prepared for NGS.

(6) Researchers analyze NGS data to study patterns of viral DNA expression, which may identify AAV that have a trophism for certain tissues, and may thus serve as better gene delivery vehicles when targeting that specific tissue.


Read the full story.

Related Topics

Meet the Author

  • Black and white portrait by Mariella Bodemeier Loayza Careaga, PhD

    Mariella joined The Scientist in 2023. Before that, she was a postdoctoral researcher at the Uniformed Services University of the Health Sciences studying sex differences on the effects of chronic stress and traumatic brain injury. Mariella holds a master’s and a PhD in neuroscience from the Universidade Federal de Sao Paulo, Brazil, and a certificate in Science Communication from the University of California, San Diego.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies