Fungal Cold Adaptation Linked to Protein Structure Changes: Study

Environmental pressure seems to spawn changes in the intrinsically disordered regions of enzymes in polar yeasts, allowing them to adapt to extreme cold.

Written byPatience Asanga
| 4 min read
Illustration of blue and gray amino acids loosely forming protein
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

There is only a certain amount of stress biological structures can withstand before they fall apart. Tissue fluids freeze into ice crystals when exposed to temperatures below −3 °C, for instance, and enzymes break down and become dysfunctional at extremely low temperatures. But there are organisms that are built to thrive in such harsh conditions. Some species of fungi, for instance, can survive the harsh weather in Antarctica, and scientists have spent years trying to figure out how. A study published in Science Advances on September 7 suggests that these polar organisms may have adapted due to tweaks to unstructured regions of their proteins.

The intrinsically disordered regions (IDRs) of proteins are the formless, liquidlike parts of proteins that lack the ability to fold into a functional shape and often react with RNA to form naked, or membraneless, cell organelles such as the nucleolus through a phenomenon known as liquid-liquid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white headshot of a woman
    Patience is a Nigeria-based freelance science journalist who writes about the environment, biotechnology, and life sciences. She is also the editor of aebsan, a student-run news outlet operated out of the University of Benin, Nigeria. Her writing has featured in aebsan, ICJS, and theGIST.
    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo