Personalized Cancer Vaccines in Clinical Trials

The field is young, but predicting antigens produced by patients’ malignant cells could yield successful treatments for individuals with a range of cancer types.

Written byJasreet Hundal and Elaine R. Mardis
| 14 min read
tailored medicine

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

ABOVE: MODIFIED FROM
© Kailey whitman

In 2014, at Washington University School of Medicine in St. Louis, six melanoma patients received infusions of an anticancer vaccine composed of their own dendritic cells. Our WashU colleagues had extracted immune cells from the patients’ blood two months earlier, cultured them in the lab, and mixed in peptides selected and synthesized based on specific mutations present in the genomes of each patient’s tumor. The cells had then taken up the peptides much as they take up foreign antigens in the body in the course of normal immune patrol. When the clinical team administered the vaccines—each patient received three infusions over several months—they hoped that the dendritic cells would induce activation and expansion of T cells capable of identifying and destroying the cancer cells, while sparing healthy tissue.

This first test of personalized cancer vaccines in people grew out of our collaborative efforts to develop ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

On Target July Issue The Scientist
July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH