Epigenetic Manipulations Can Accelerate or Reverse Aging in Mice

Repairing damaged DNA appears to drive aging by causing the loss of epigenetic information, but restoring that information reverses such effects, a study finds.

Written byAlejandra Manjarrez, PhD
| 4 min read
A younger-looking mouse next to an older-looking one
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

As they age, mammalian cells accrue distinct epigenetic signatures—for example, variations in DNA methylation patterns. Yet it has remained unclear whether these are a cause or a consequence of aging. A study published today (January 12) in Cell provides evidence that epigenetic disruptions alone accelerate the molecular, physiological, and neurocognitive aging in mice, and that this is driven by the cellular response to DNA damage, such as double-strand breaks (DSBs). By activating specific genes highly expressed during mammalian development, the researchers were able to restore the epigenetic landscape disrupted by the DNA repair process in their aging mouse model, leading to signs of rejuvenation.

DSBs have long been associated with aging. Because this severe form of DNA damage can lead to mutations, some researchers have hypothesized that this derived accumulation of genomic alterations could be a major cause of aging. However, in recent decades, other data have hinted that DNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo