Beetle Larvae Can Survive on Polystyrene Alone

Also known as superworms, the scavengers are able to digest the plastic, opening up the possibility of harnessing their abilities to help tackle our pollution crisis.

Written byNayanah Siva
| 4 min read
superworms polystyreme styrofoam Zophobas atratus

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Zophobus superworms
© ISTOCK.COM, SUMNERSGRAPHICSINC

Scavenger worms have crawled the Earth for 100 million years. From bone-eating worms that fed off plesiosaurs to today’s mealworms and maggots that feast on decaying organic matter in the backyard, their diets have moved with the times.

As we find ourselves in the midst a plastic pollution crisis, scientists have tested feeding so-called superworms, the larvae of Zophobas atratus, Styrofoam, a type of polystyrene. Not only were the worms able to eat the material as their sole diet, but the researchers found that their gut microbiota degraded the polystyrene and converted the complex substance into carbon dioxide, according to findings published March 15 in Science of the Total Environment.

The research builds on previous studies that found wax worms and mealworms were also able to eat plastic.

“It’s really interesting now that we’re seeing multiple small insects that can eat and degrade polystyrene, as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform