Bacterial Symbionts Tell Ticks When to Eat

The endosymbiont Coxiella affects tick serotonin production and subsequent blood-feeding behavior, a study finds.

Written byAbby Olena, PhD
| 3 min read
A brown tick is shown from above as it climbs a green blade of grass

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: An adult female Asian longhorned tick (Haemaphysalis longicornis)
JAMES GATHANY, CDC

Many species of ticks need blood meals to grow, develop, and reproduce. During those blood meals, they can transmit diseases to their hosts. Researchers have known for several years that treating ticks with antibiotics to do away with bacteria that live inside them affects blood intake, but it wasn’t clear why. Now, a study published September 14 in Cell Host & Microbe shows that one such bacterial symbiont, Coxiella, influences blood feeding by the Asian longhorned tick (Haemaphysalis longicornis) by contributing to tick tryptophan metabolism, thus regulating serotonin production.

“That microbes . . . influence brain and behavior is really fascinating,” says Carlos Ribeiro, a neuroscientist at Champalimaud Centre for the Unknown in Portugal who did not participate in the study. “We are moving away from the phase where we are just documenting these effects [to] starting to understand ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control