Automating In Vivo Screens and Challenging Dogma

Scientists built a microfluidic lab-on-a-chip device that accelerates compound screens and phenotype analyses in C. elegans models of reproductive aging.

Written byDeanna MacNeil, PhD
| 3 min read
Fluorescent microscopy image of two adult C. elegans and several offspring.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Caenorhabditis elegans is a tiny nematode species that makes big contributions to molecular research. These worms have simple genomes, well-delineated developmental processes, brief lifespans, and many conserved biological pathways across the animal kingdom, including human processes such as aging, reproduction, and neurodevelopment. Because they are easy and affordable to grow in a dish, they are exceptional model organisms for in vivo compound screens, but traditional C. elegans culture methods can hinder high throughput assays.1

There are limitations to what you can do when you're looking on a plate, and with millions of worms.
- Coleen Murphy, Princeton University

“There are limitations to what you can do when you're looking on a plate, and with millions of worms,” said Coleen Murphy, a molecular biologist at Princeton University who studies aging processes using C. elegans models. Conventionally, scientists culture C. elegans on solid agar plates and visually screen the effects of genetic or environmental perturbations, seeking out and scoring phenotypic changes by watching the worms under a microscope. While this approach is robust and informative, it is tedious and groups many worms on the same plate, making it difficult for researchers to investigate related phenotypes in individual animals.1

As a solution to conventional culture limitations, Murphy’s team built a new high throughput tool. In work published in Lab on a Chip, the researchers created and validated a lab-on-a-chip device called CeLab, which enabled them to automate worm assays for both individual- and population-level studies.2 Designed by bioengineer Salman Sohrabi, who was a postdoctoral researcher in Murphy’s laboratory at the time of this work, CeLab contains 200 separate incubation areas connected to microfluidic ports for manipulations, compound screens, and phenotype analyses.

The researchers performed proof of principle experiments to validate their system, comparing plate-based lifespan, mating, reproductive span, and drug testing assays with CeLab techniques. They demonstrated comparable measurements between plates and CeLab, found that CeLab accelerated screening, and scored individual worm phenotypes that could not be captured in population plate assays.

Continue reading below...

Like this story? Sign up for FREE Genetics updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

“There are two sides to the screen: you need to have a good phenotype and a good way to do it. Because sometimes you have really nice phenotypes, but they're really hard to set up for automation,” said Alex Parker, a neuroscientist from the University of Montreal, who uses C. elegans models to screen neurodegenerative disease therapeutics and who was not involved in the study. C. elegans are excellent models for lifespan research, but their large brood size typically necessitates that researchers manually separate individual worms from their progeny while conducting lifespan studies on fertile organisms. Parker pointed to Murphy’s solid foundation in C. elegans research as key to CeLab’s automation success. “It's a very nice system because they had the benefit and the experience of knowing the field for a long time, and what are the problems with trying to automate.”

CeLab’s strengths also allowed Murphy’s team to investigate reproductive aging paradigms, such as the disposable soma hypothesis, which is the evolutionary concept of a trade-off between how long an animal lives versus how large it grows and how often it reproduces.3 Although some lifespan studies in C. elegans have supported the disposable soma hypothesis, the relationship between aging and reproduction remains contentious across the animal kingdom.3 Murphy and her team found that lifespan and reproductive span were uncoupled in worms cultured on CeLab chips, and individual lifespans were actually correlated with higher progeny numbers. “They've got a new way to study this, and it's already paying off in interesting observations,” said Parker.

Their observations support the idea that lifespan does not come at the cost of reproductive fitness, but rather that if an animal is healthy, it is more likely to live longer, reproduce longer, and produce more progeny. “This idea that at an individual level, the disposable soma hypothesis is incorrect, it was mind blowing because it's so well accepted in the field that there must be a trade-off,” Murphy said. “It's just so cool to observe … and it fits much better with all the observations in humans.”

  1. O'Reilly LP, et al. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev. 2014;69-70:247-253.
  2. Sohrabi S, et al. CeLab, a microfluidic platform for the study of life history traits, reveals metformin and SGK-1 regulation of longevity and reproductive span. Lab Chip. 2023;23(12):2738-2757.
  3. Johnson AA, et al. Revamping the evolutionary theories of aging. Ageing Res Rev. 2019;55:100947.

Related Topics

Meet the Author

  • Deanna MacNeil, PhD headshot

    Deanna earned their PhD from McGill University in 2020, studying the cellular biology of aging and cancer. In addition to a passion for telomere research, Deanna has a multidisciplinary academic background in biochemistry and a professional background in medical writing, specializing in instructional design and gamification for scientific knowledge translation. They first joined The Scientist's Creative Services team part time as an intern and then full time as an assistant science editor. Deanna is currently an associate science editor, applying their science communication enthusiasm and SEO skillset across a range of written and multimedia pieces, including supervising content creation and editing of The Scientist's Brush Up Summaries.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies