Archaea Sport Structures that Shuttle Genes Among Microbes

Researchers find so-called integrons, previously known only in bacteria, in their distantly related microbial relatives.

Written byNatalia Mesa, PhD
| 3 min read
Orange and blue spring with steam rising
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Earth’s first life forms eventually took one of three different paths, forming the domains of Eukarya, Bacteria, and Archaea. These domains have been evolving separately for billions of years.

Recent evidence suggests that the boundaries between the three domains are not so clean. Studies show that members of different domains can traffic genes back and forth, potentially fast-tracking evolution. How they do so remains unknown, but a study published today (November 16) in Science Advances provides a possible clue with the first report that archaea have integrons—gene exchange machinery previously thought only to exist in bacteria. This may allow microbes from the two domains to swap information and instantly acquire new functions.

“We’ve known for a while that there are a lot of genes that bacteria and archaea exchange,” says Olga Zhaxybayeva, an evolutionary biologist at Dartmouth College who was not involved in the study. If integrons turn out to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies