A Gene Variant Linked to Alzheimer’s May Disrupt Myelin Production

The APOE4 variant causes cholesterol buildup in the cells that make protective fatty sheaths for neurons, possibly helping explain its role in neurodegeneration.

Written byAndy Carstens
| 5 min read
Illustration of myelinated neuron axons in light blue, with spindly blue and purple cells interspersed among them.
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Among people who fall prey to Alzheimer’s disease, between 40 and 65 percent have a gene variant called APOE4. Scientists have long known the variant significantly increases the risk of developing the neurodegenerative disease, especially when person inherits copies from both parents, but they’re still learning about molecular mechanisms that explain APOE4’s role.

A study published on November 16 in Nature suggests that one way APOE4 may contribute to Alzheimer’s disease is by causing cholesterol to accumulate inside oligodendrocytes, reducing the cells’ capacity to perform their main function: making fatty myelin sheaths that protect neurons and help them convey signals. The research further finds that, in mice with APOE4, clearing the clogged cholesterol—myelin’s main ingredient—and allowing the substance to cross the cells’ membranes partially restored myelin production and improved cognition, suggesting a therapeutic target to combat Alzheimer’s disease.

“They're showing that one of the things that APOE does, which hasn't ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Andrew Carstens

    Andy Carstens is a freelance science journalist who is a current contributor and past intern at The Scientist. He has a bachelor’s degree in chemical engineering from the Georgia Institute of Technology and a master’s in science writing from Johns Hopkins University. Andy’s work has previously appeared in AudubonSlateThem, and Aidsmap. View his full portfolio at www.andycarstens.com.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies